The generator matrix

 1  0  1  1  1  1  1 X+6  1  1  1 2X  1  1  1  0  1  1  1 2X  1  1  1 X+6  1  1  1  1  1  1  3 X+3  1  1  1 2X+3  1  1  1  3  1  1  1  X  1  1  1 2X+3  1  1  1 X+3  1  1  1  X  1  1  1  1  0  3  1  1  1  1  1  1  1  1 2X 2X+3  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  3  1  1  1  1
 0  1 2X+7  8 X+1 X+6 X+5  1 2X  7 2X+8  1  0 2X+7  8  1 2X X+1 X+5  1 X+6  7 2X+8  1  3 X+3 2X+4 X+4  2 2X+2  1  1 2X+3  4 X+2  1  3 2X+4  2  1 X+3 X+4 X+2  1 2X+3  4 2X+2  1 X+4 X+6  2  1 X+3 X+1  8  1  3  0 2X+4 2X+7  1  1 X+2 X+5  7  4 2X 2X+3 2X+8 2X+2  1  1  6  6  X  X  6  X 2X+6 2X+6 2X+6 2X+1 2X+1 X+7 X+7 2X+1 X+7  1  1  1  5 X+8  X  5 2X+5 X+8 X+8
 0  0  6  0  3  6  3  3  3  0  6  6  3  3  6  3  6  0  0  0  0  6  3  6  6  3  0  6  3  0  6  0  0  3  6  3  3  3  6  3  6  0  0  0  6  0  6  0  3  3  0  3  0  6  3  6  0  6  6  0  6  0  3  6  3  6  0  3  0  3  3  6  0  3  6  3  6  0  0  3  6  6  3  0  3  0  6  6  3  0  0  6  3  6  0  3  0

generates a code of length 97 over Z9[X]/(X^2+6,3X) who�s minimum homogenous weight is 192.

Homogenous weight enumerator: w(x)=1x^0+432x^192+108x^193+1134x^194+360x^195+54x^196+36x^198+54x^201+4x^207+2x^216+2x^234

The gray image is a code over GF(3) with n=873, k=7 and d=576.
This code was found by Heurico 1.16 in 0.434 seconds.